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Abstract

In this manuscript, we show first a more synthetic definition of strong
pseudoprimality to base 2 and then a possible better implementation of
the Baillie-PSW primality test. In particular, about the implementation
of the Baillie-PSW primality test, we show that some operations can be

avoided [1, 2].

1. Introduction

The main objective of this manuscript is to show the possibility of
implementing the Baillie-PSW primality test more appropriately with
reference to strong pseudoprimality to base 2. In particular we first show,

by means of the characterization of Fermat’s little theorem in the
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congruence classes mod 8 a more concise definition of strong

pseudoprimality to base 2 and then a possible better implementation of

the Baillie-PSW primality test.

2. A Necessary Condition of Primality Deriving from Euler’s

Criterion and Legendre Symbol

Fermat’s little theorem states that:

if p is a prime number and a is any integer coprime with p, then it
is:

a?™? =1 (mod p).
We can express Fermat’s little theorem in another way:

if p, p > 2, is a prime number and « is any integer coprime with p,
then it is:

p-1 p-1

a2 =1(modp) or a2 =-1(mod p).

By means of Euler’s criterion and Legendre symbol we can characterize
the above condition with respect to the base a = 2 in the congruence

classes p =1 (mod 8), p = 3 (mod 8), p =5 (mod 8) and

p="T (mod 8). In fact, we have the following proposition.

Proposition 2.1. If p, p > 2, is a prime number, p =1 (mod 8) or

p-l
p=T (mod 8), then it is: 2 2 =1 (mod p); if p, p>2, is a prime

p-1
number, p = 3 (mod 8) or p =5 (mod 8), thenitis: 2 2 = -1 (mod p).
Proof. If p, p > 2, is prime and if, moreover, p =1 (mod 8), le., if

p=8k+1 ke N, k>1, since:
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2 2 2
p -1 (8k+1)* -1 64k* +1+16k—1
(2) =(-18 =(1 = =1 s =( 1)2k(4k+1) -1,
p
p1

from Euler’s criterion a 2 = (%) (mod p) for a=2 it is:

b1
22 =1(mod p). Similarly in other cases p =3 (mod 8),

iS]
Il

5 (mod 8) and p = 7 (mod 8).
Proposition 2.1 can also be expressed in the following way.

Proposition 2.2. If p, p>2, is a prime number such that

p-1=2°-t se N, s>1,te N, t odd, we have the following:

a)if p =1 (mod 8) (s > 3), then we have:

t _ 2"t _ . _o.
2! =1 (mod p) or 2 = -1 (mod p) for some integer r, 0 < r < s—2;

b) if p = 3 (mod 8), then we have: 2! = -1 (mod p);
o) if p =5 (mod 8), then we have: 22 = 1 (mod p);

d)if p

7 (mod 8), then we have: 2' =1 (mod p).

p-1

2
Proof. a) From proposition 2.1: [2 4 J -1=0 (mod p), (in this

case it 1s pEl(modS), ie, p=8k+1, ke N, k>1, p—1=23k,

ke N, k>1; so p; L is an integer number and it is also s > 3) we

have:

[y

p1 p1 p-1 p1 p-L
[2 +1)l28 1|22 4122 +1]22 -1
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= 0 (mod p);

p_
28

1 = t, we have:

S0, since

(28 —1)(2f +1)(2% +1)- .. - (2271 +1)(2% 7% +1) = 0 (mod p),

ie: 2/ =1 (mod p) or 92t = (mod p) for some integer r,

0<r<s-2

b) since it 1s p-1= 2(4k+1) =2, ke N, 1e., t= pT—l, from
Proposition 2.1 we have: 2 = -1 (mod p);

¢) since it is p—1=22(2k+1)=2%, ke N, ie., 2 = pT‘l, from
Proposition 2.1 we have: 2% = -1 (mod p);

d) since it is p-1= 2(4k+3) =2, ke N, 1ie., t= pT—l, from

Proposition 2.1 we have: 2/ =1 (mod p).

3. The Classical Necessary Condition of Primality

Deriving from Fermat’s Little Theorem

On prime numbers we have the following proposition.

Proposition 3.1. If p, p>2, is a prime number such that
p-1=2°-t se N, s>1, te N, t odd, for each integer a coprime

with p, 1 < a < p, we have:

al =1 (mod p) or azr't = -1 (mod p) for some integer r,

0<r<s—-1.
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2
p-1
Proof. From Fermat’s little theorem: [a 2 J -1=0 (mod p), it is:

p-1 p-1 p-1 p-1 p-1
= — ]
a? +1lla 4 +1| ...-]a2 +1||la? +1]a? -1

= 0 (mod p);

p_

. 1 =t, we have:
2

S0, since

-2

(@ —1)(a +1)(@® +1)- . - (a2t +1)(@® "t +1) = 0 (mod p),

le.: =1 (mod p) or a?t =1 (mod p) for some integer r,

a
0<r<s—-1.

With reference to the congruence classes p =1 (mod 8),
p=3(mod8), p=5(mod8 and p =7 (mod8), Proposition 3.1
becomes the following.

Proposition 3.2. If p, p>2, is a prime number such that

p-1=2°-t se N, s=1, te N, t odd, for each integer a coprime
with p, 1 < a < p, we have:
a) if p=1(mod8) (s>3), then we have: a' =1 (mod p) or
2" ¢

a = -1 (mod p) for some integer r, 0 < r < s—1;

b) if p=3(mod8), then we have: a' =1 (mod p) or

a' = -1 (mod p);

¢ if p=5(mod8), then we have: a' =1(mod p) or
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a' = -1 (mod p) or a? =1 (mod p);

d if p=7(mod8), then we have: da' =1 (mod p) or

a' = -1 (mod p).

Proof. a) As in Proposition 3.1, (since p =1 (mod 8), we have

p-1=23.k ke N, k>1, thatis, s > 3);

b) in fact, since p = 8k +3, ke N, ie, p—1=2(4k+1), ke N, in

reference to Proposition 3.1 we have s = 1, thatis, r = 0;

¢) in fact, since p = 8k +5, ke N, ie., p—1= 22(2k+1), ke N, in

reference to Proposition 3.1 we have s = 2, thatis, r = 0 or r = 1;

d) in fact, since p =8k +7, ke N, ie., p—-1= 2(4k+3), ke N, in

reference to Proposition 3.1 we have s = 1, thatis, r = 0.

4. On Strong Pseudoprimality to Base 2

Since there are some odd composite integers n that verify the
conditions of Proposition 3.1, we can define the strong pseudoprimality as

follows.

Definition 4.1. If n i1s an odd composite integer, such that
n-1=2%-¢t, se N, s>1 te N, t odd, then n is a strong
pseudoprime to the integer base a (spsp (a)), 1 < a < n, coprime with n,

if we have:

a' =1(mod n) or a??=-1(mod n) for some integer r,

0<r<s-1 (see[2] and [4]).

Regarding to Proposition 3.2, we have the following definition of
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strong pseudoprimality to integer base a, 1 < a < n, coprime with n, in
reference to congruence classes 7 =1 (mod 8), n =3 (mod 8),

n=5(mod 8) and n = 7 (mod 8).

Definition 4.2. If n is an odd composite integer, such that
n-1=2%-¢t, se N, s21 te N, t odd, then n is a strong

pseudoprime to integer base a (SpSp (a)), 1 < a < n, coprime with n, if

we have:

n=1(mod 8) (s> 3) and
a' =1 (mod n) or a?t =1 (mod n) for some integer r, 0 < r<s-1
or

n=3(mod 8 and (a’ =1 (mod n) or a' = -1 (mod n))

or
n =5 (mod 8) and

a' =1 (mod n) or a® = -1 (mod n) or a? = -1 (mod n)

or

n =17 (mod 8) and (a’ =1 (mod n) or a’ = -1 (mod n)).

Since some odd composite integers n satisfy the conditions of
Proposition 2.2, it is possible to define the strong pseudoprimality to base

2 in a more synthetic way than Definition 4.2 with a = 2 as follows.

Definition 4.3. If n is an odd composite integer, such that
n-1=2%-¢t, se N, s21 te N, t odd, then n is a strong

pseudoprime to base 2 (spsp(2)) if we have:

n =1 (mod 8) (s > 3) and

t _ 2"t _ : _
2! =1 (mod 7n) or 2 = -1 (mod n) for some integer r, 0 < r < s —2
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or
n=3(mod 8 and 2'=-1(mod n)
or
n=5(mod 8 and 2% = 1 (mod n)
or

n="17(mod 8 and 2'=1 (mod n).

Remark 4.1. If n, n > 2, is an odd integer such that n —1 = 2% - ¢,
se N, s>21, te N, t odd, considered the proof of Proposition 2.2, to
calculate n =1 (mod 8), n =3 (mod 8), n =5 (mod 8) and

n =17 (mod 8), it is sufficient to compute only s and ¢. In fact we have:

n=1(mod 8 < s>3%n=3(mod8) < s=1andt=4k+1, ke N;

n=5(mod 8 < s=2 n=7(mod8) < s=1andt=4k+3, ke N.

We can give Definition 4.3, using only the values s and ¢.

Definition 4.4. If n is an odd composite integer, such that
n-1=2%-¢t, se N, s21 te N, t odd, then n is a strong

pseudoprime to base 2 (spsp(2)) if we have:

s >3 (n =1 (mod 8)) and

t _ 2"t _ . _
2! =1 (mod n) or 2 = -1 (mod n) for some integer r, 0 < r < s —2

or

s=1andt=1 (mod 4) (n =3 (mod 8)) and 2’ = -1 (mod n)

or

s=2 (n =5 (mod 8)) and 22 = 1 (mod n)
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or
s=1andt=3(mod 4) (n =7 (mod 8)) and 2’ =1 (mod n).

4.1. Some examples on the application of Proposition 2.2 and
Definition 4.4

In this section, we study some odd integers, using Proposition 2.2 and
Definition 4.4.

Example 4.1. Considering n = 220729, it is: n>2, n-1-=

220728 = 2%.27591, s =3, t = 27591, 220729 =1 (mod 8); moreover,
since we have:

2! = 227591 = 1 (mod 220729),
n = 220729 =103 - 2143 is a spsp(2) (Def. 4.4).

Example 4.2. Considering n = 280601, it is: n > 2, n—1 = 280600

= 23 -35075, s =3, t = 35075, 280601 =1 (mod 8); moreover, since we
have:

2! = 235075 = 951179 # 1 (mod 280601),

2! = 235075 = 951179 2 —1 (mod 280601),

s—2
22" Tt = 92l = 9235075 — _1 (mod 280601),
n = 280601 = 277 -1013 is a spsp(2) (Def. 4.4).

Example 4.3. Considering n = 396271, itis: n > 2, n—1 = 396270
=2-198135, s=1, ¢ =198135, 198135 =3 (mod 4), 396271 =

7 (mod 8); moreover, since we have:

2l = 2198135 — 989549 # 1 (mod 396271),
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for the counternominal proposition of Proposition 2.2, n = 396271 is a
composite integer. Furthermore, n = 396271 =223-1777 1is not a
Spsp (2) (Def. 4.4).

Example 4.4. Considering n = 489997, itis: n > 2, n—1 = 489996

=22.122499, s =2, ¢ =122499, 489997 = 5 (mod 8); moreover, since
it is:

2! = 2122499 — 949759 (mod 489997),

22 = 92122499 — _1 (mod 489997),

n = 489997 =157 -3121 is a spsp(2) (Def. 4.4).

Example 4.5. Considering n = 877099, itis: n > 2, n—1 = 877098
=2.438549, s=1, =438549, 438549 =1 (mod 4), 877099 =

3 (mod 8); moreover, since we have:

2! = 2438549 — _1 (mod 877099),
n = 877099 = 307 - 2857 is a spsp(2) (Def. 4.4).

Example 4.6. Considering n = 3828001, it is: n>2, n-1=

3828000 = 2° -119625, s=5, t=119625 3828001 =1 (mod 8);

moreover, since it is:
2! = 2119625 — 9879799 % 1 (mod 3828001),
2t = 2119625 — 9879792 # —1 (mod 3828001),

22t = 92119625 _ 17174932 £ —1 (mod 3828001),

2 2
2271 = 927119625 _ 9 4+ 1 (mod 3828001),
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25724 23.¢ 23.119625
2 =221 =29 =12 —1 (mod 3828001),

for the counternominal proposition of Proposition 2.2, n = 3828001 is a
composite integer. Furthermore, n = 3828001 = 101 -151-251 is not a
Spsp (2) (Def. 4.4).

Example 4.7. Considering n =1251949, it is: n>2, n-1-=

1251948 = 22 .312987, s=2, ¢=312987, 1251949 =5 (mod 8);

moreover, since it is:

2! = 2312987 = 755566 (mod 1251949),

22t = 92312987 _ _1 (mod 1251949),
n =1251949 = 409 - 3061 is a spsp(2) (Def. 4.4).

Example 4.8. Considering n = 3421589, it is: n>2, n-1=

3421588 = 22 . 855397, s=2, ¢=2855397, 3421589 =5 (mod 8);

moreover, since it is:

2! = 2855397 = 9301490 (mod 3421589),

22t = 92855397 _ 358459 2 —1 (mod 3421589),

for the counternominal proposition of Proposition 2.2, n = 3421589 is a
composite integer. Furthermore, n = 3421589 =131 26119 1is not a
spsp (2) (Def. 4.4).

Example 4.9. Considering n = 29111881, it is: n>2, n-1=

29111880 = 2% - 3638985, s = 3, t = 3638985, 29111881

1l
—
—_

=]
o
[oF)
oo
b

moreover, since it is:

2! = 23638985 — 1 (mod 29111881),
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n =29111881 =211-281-491 isa spsp(2) (Def. 4.4).

Example 4.10. Considering n = 19384289, it is: n > 2, n-1-=

19384288 = 2° . 605759, s=5, ¢=605759, 19384289 =1 (mod 8);

moreover, since it is:

2! = 2605759 — 16784867 £ 1 (mod 19384289),

2! = 2605759 — 16784867 # —1 (mod 19384289),

22 = 92605759 _ 19974464 £ —1 (mod 19384289),

2 2
2271 = 927605759 < 4502867 £ —1 (mod 19384289),

-2 3 3
92t _ 927t _ 927605759 _ 1 4 1 (mod 19384289),

for the counternominal proposition of Proposition 2.2, n = 19384289 is a
composite integer. Furthermore, n = 19384289 = 89 - 353 - 617 is not a
Spsp (2) (Def. 4.4).

Example 4.11. Considering n = 15247621, it is: n > 2, n-1=

15247620 = 22 - 3811905, s =2, t = 3811905, 15247621

5 (mod 8);

moreover, since we have:
2! = 23811905 — 9141205 (mod 15247621),
22t = 923811905 — _1 (mod 15247621),

n =15247621 = 61-181-1381 is a spsp(2) (Def. 4.4).

Example 4.12. Considering n = 612816751, it is: n > 2, n-1

612816750 = 2 - 306408375, s=1, t = 306408375, 306408375
3 (mod 4), 612816751 = 7 (mod 8); moreover, since it is:
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2l = 9306408375 _ 550800674 # 1 (mod 612816751),

for the counternominal proposition of Proposition 2.2, n = 612816751 1is
a composite integer. Furthermore, n = 612816751 = 251 - 751 - 3251 is
not a spsp (2) (Def. 4.4).

Example 4.13. Considering n = 7279379941, it is: n > 2, n—-1=

7279379940 = 22 1819844985, s =2, t = 1819844985, 7279379941 =

5 (mod 8); moreover, since we have:
ol = 91819844985 _ 859187010 (mod 7279379941),

22 = 921819844985 _ 4443977458 # —1 (mod 7279379941),

for the counternominal proposition of Proposition 2.2, n = 7279379941 is
a composite integer. Furthermore, n = 7279379941 = 211 - 3571 - 9661 1is
not a spsp (2) (Def. 4.4).

Example 4.14. Considering n = 11239359601, it is: n > 2, n -1

11239359600 = 2% - 702459975, s =4, ¢ = 702459975, 11239359601

=1 (mod 8); moreover, since it is:
2l = 2702459975 — 6448799664 # 1 (mod 11239359601),
2l = 9702459975 _ 6448799664 £ —1 (mod 11239359601),
22t = 92702459975 _ 5391956728 £ —1 (mod 11239359601),
92" Pt _ g2%t _ 92702459975 _ 1 4 _q (mod 11239359601),

for the counternominal proposition of Proposition 2.2, n = 11239359601
is a composite integer. Furthermore n =11239359601
= 281 - 4201 - 9521 is not a spsp (2) (Def. 4.4).
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Example 4.15. Considering n = 83828294551, itis: n > 2, n—-1=
83828294550 = 2- 41914147275, s =1, t = 41914147275, 41914147275
= 3 (mod 4), 83828294551 = 7 (mod 8); moreover, since we have:

ol = 41914147275 _ 1 (od 83828294551),
n = 83828294551 = 1231 - 6151 - 11071 is a spsp(2) (Def. 4.4).

Example 4.16. Considering n = 3215031751, it is: n > 2, n-1=
3215031750 = 2-1607515875, s =1, t =1607515875, 1607515875
= 3 (mod 4), 3215031751 = 7 (mod 8); moreover, since we have:

2l = 1607515875 _ 1 (mod 3215031751),

n = 3215031751 = 151 - 751 - 28351 is a spsp(2) (Def. 4.4).

5. A Possible Better Implementation of the
Baillie-PSW Primality Test

The Baillie-PSW primality test (Pomerance 1984) is a probabilistic

algorithm to study the primality of odd integers n, n > 2, which consists

of the following steps (see [1] and [3]).
Algorithm 1:

a) A strong pseudoprimality test to base 2 is performed (Definition 4.1
with a = 2); if the test is not verified, for the counternominal proposition
of Proposition 3.1 with a = 2, n is a composite integer and the Algorithm
1 stops, otherwise, if it is verified, since n can be a prime number or a
strong pseudoprime to base 2, according to Definition 4.1, you go on to

next step;

b) In the sequence 5, — 7, 9, —11, ... the first number D for which
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the symbol of Jacobi (%) = —1 is found; then a Lucas pseudoprimality

test with discriminant D on n is performed. If the test is not verified n

1s a composite integer, otherwise, n is most likely prime.

To improve the above implementation of the Baillie-PSW primality
test, with reference to the version of Pomerance (1984) (see [3]), it is
possible to apply initially, instead of the strong pseudoprimality test to
the base 2, according to the Definition 4.1 with a = 2, the strong

pseudoprimality test to base 2, according to Definition 4.4. So in detail if
n, n > 2, is an odd integer suchthat n -1 =2°-¢, se N, s>1, te N,

t odd, Algorithm 1 becomes the following, which is more synthetic.
Algorithm 2:

o) If s >3 (n =1 (mod 8)) you check if it is:

2! =1 (mod n) or 92t = (mod n) for some integer r,
0<r<s-2 (51); if condition (5.1) is mnot verified, for the
counternominal proposition of Proposition 2.2, n is a composite integer
and the Algorithm 2 stops, otherwise, if it is verified, since n can be a

prime number or a strong pseudoprime to base p; = 2, according to

Definition 4.4, you go on to next step;

ocl) You apply Step b) of the Algorithm 1;

B) If s=1and t =1 (mod 4) (» = 3 (mod 8)), you check if it is:

2! = -1 (mod n); (5.2)

if condition (5.2) is not verified, for the counternominal proposition of
Proposition 2.2, n 1s a composite integer and the Algorithm 2 stops,

otherwise, if it is verified, since n can be a prime number or a strong
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pseudoprime to base p; = 2, according to Definition 4.4, you go on to next

step;

[31) You apply Step b) of the Algorithm 1;

Y)If s =2 (n =5 (mod 8)) you check if it is: 2% = -1 (mod n); (5.3)

if condition (5.3) is not verified, for the counternominal proposition of
Proposition 2.2, n 1s a composite integer and the Algorithm 2 stops,
otherwise, if it is verified, since n can be a prime number or a strong

pseudoprime to base p; = 2, according to Definition 4.4, you go on to next

step;

Yl) You apply Step b) of the Algorithm 1;

8)If s=1and t = 3 (mod 4) (n =7 (mod 8)), you check if it is:

2! =1 (mod n); (5.4)

if condition (5.4) is not verified, for the counternominal proposition of
Proposition 2.2, n is a composite integer and the Algorithm 2 stops,
otherwise, if it is verified, since n can be a prime number or a strong

pseudoprime to base p; = 2 according to Definition 4.4, you go on to next

step;

61) You apply Step b) of the Algorithm 1.

6. Conclusions

If n, n > 2, is an odd integer such that n -1 =2%-¢, se N, s >1,
t € N, t odd, considering Algorithm 1 (Pomerance 1984) and Algorithm
2, related to the Baillie-PSW primality test, comparing Definition 4.2 with

a = 2 (see Definition 4.1 with a = 2) and Definition 4.4, we can state

that:
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a)if s >3 (n =1 (mod 8)) it is not necessary to check if it is:

t _ 2"t _ : _
2! =1 (mod 7n) or 2 = -1 (mod n) for some integer r, 0 < r < s -1,

since it is sufficient to check only:
2! =1 (mod n) or 92t = (mod n) for some integer r, 0 < r < s—2;

-1
so it is not necessary to check if it is: 9%t = 1 (mod n);

b)if s=1 and ¢ =1 (mod 4) (n = 3 (mod 8)), it is not necessary to
check if it is:
20 =1 (mod n) or 2! =-1(mod n),
since it is sufficient to check only: 2! = -1 (mod n);

¢)if s =2 (n =5 (mod 8)), it is not necessary to check if it is:
2! =1 (mod n) or 2' =-1(mod n) or 22 = 1 (mod n),

since it is sufficient to check only: 2% = -1 (mod n);

d)if s=1 and ¢ = 3 (mod 4) (n =7 (mod 8)), it is not necessary to
check if it is:

2t =1 (mod n) or 2! =-1 (mod n),

since it is sufficient to check only: 2° =1 (mod n).

Therefore, some unnecessary checks can be avoided in the

implementation of the Baillie-PSW primality test.
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